Structural and Functional Difference of Pheromone Binding Proteins in Discriminating Chemicals in the Gypsy Moth, Lymantria Dispar

نویسندگان

  • Yanxue Yu
  • Fei Ma
  • Yixia Cao
  • Junhua Zhang
  • Yongan Zhang
  • Shengnan Duan
  • Yadong Wei
  • Shuifang Zhu
  • Naizhong Chen
چکیده

Pheromone-binding proteins (PBPs) of the gypsy moth, Lymantria dispar L., play an important role in olfaction. Here structures of PBPs were first built by Homology Modeling, and each model of PBPs had seven α-helices and a large hydrophobic cavity including 25 residues for PBP1 and 30 residues for PBP2. Three potential semiochemicals were first screened by CDOCKER program based on the PBP models and chemical database. These chemicals were Palmitic acid n-butyl ester (Pal), Bis(3,4-epoxycyclohexylmethyl) adipate (Bis), L-trans-epoxysuccinyl-isoleucyl-proline methyl ester propylamide (CA-074). The analysis of chemicals docking the proteins showed one hydrogen bond was established between the residues Lys94 and (+)-Disparlure ((+)-D), and л-л interactions were present between Phe36 of PBP1 and (+)-D. The Lys94 of PBP1 formed two and three hydrogen bonds with Bis and CA-074, respectively. There was no residue of PBP2 interacting with these four chemicals except Bis forming one hydrogen bond with Lys121. After simulating the conformational changes of LdisPBPs at pH7.3 and 5.5 by constant pH molecular dynamics simulation in implicit solvent, the N-terminal sequences of PBPs was unfolded, only having five α-helices, and PBP2 had larger binding pocket at 7.3 than PBP1. To investigate the changes of α-helices at different pH, far-UV and near-UV circular dichroism showed PBPs consist of α-helices, and the tertiary structures of PBP1 and PBP2 were influenced at pH7.3 and 5.5. The fluorescence binding assay indicated that PBP1 and PBP2 have similarly binding affinity to (+)-D at pH 5.5 and 7.3, respectively. At pH 5.5, the dissociation constant of the complex between PBP1 and 2-decyl-1-oxaspiro [2.2] pentane (OXP1) was 0.68 ± 0.01 μM, for (+)-D was 5.32 ± 0.11 μM, while PBP2 with OXP1 and (+)-D were 1.88 ± 0.02 μM and 5.54 ± 0.04 μM, respectively. Three chemicals screened had higher affinity to PBP1 than (+)-D except Pal at pH5.5, and had lower affinity than (+)-D at pH7.3. To PBP2, these chemicals had lower affinity than the sex pheromone except Bis at pH 5.5 and pH 7.3. Only PBP1 had higher affinity with Sal than the sex pheromone at pH 5.5. Therefore, the structures of PBP1 and PBP2 had different changes at pH5.5 and 7.3, showing different affinity to chemicals. This study helps understanding the role of PBPs as well as in developing more efficient chemicals for pest control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar.

Pheromone olfaction in the gypsy moth, Lymantria dispar, involves accurate distinction of compounds with similar structure and polarity. The identified sex pheromone is (7R,8S)-2-methyl-7,8-epoxyoctadecane, 1a, and a known antagonist is (7Z)-2-methyloctadec-7-ene, 4a. The first step in pheromone olfaction is binding of odorants by small, soluble pheromone-binding proteins (PBPs), found in the p...

متن کامل

Attraction of the gypsy moth to volatile organic compounds (VOCs) of damaged Dahurian larch.

Olfactory responses of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), a major defoliator of deciduous trees, were examined in Inner Mongolia, China. We studied whether the gypsy moth adults are attracted by the major volatile organic compounds (VOCs) of damaged Larix gmelinii (Dahurian larch) foliage and compared the attractiveness of the plant volatiles with that of the synt...

متن کامل

Effects of SPLAT® GM sprayable pheromone formulation on gypsy moth mating success

Several integrated pest management programs rely on the use of mating disruption tactics to control insect pests. Some programs specifically target non-native species, such as the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). We evaluated SPLAT GM, a new sprayable formulation of the gypsy moth sex pheromone disparlure, for its ability to disrupt gypsy moth mating. The study was...

متن کامل

Ligand-interaction kinetics of the pheromone- binding protein from the gypsy moth, L. dispar: insights into the mechanism of binding and release.

The pheromone-binding proteins (PBPs), which exist at a high concentration in the sensillum lymph surrounding olfactory neurons, are proposed to be important in pheromone detection and discrimination in insects. Here, we present a systematic study of PBP-ligand interaction kinetics. We find that PBP2, from the gypsy moth, Lymantria dispar, associates and dissociates slowly with its biofunctiona...

متن کامل

Olfaction in the gypsy moth, Lymantria dispar: effect of pH, ionic strength, and reductants on pheromone transport by pheromone-binding proteins.

The pheromone-binding proteins (PBPs) are 16-kDa abundant proteins in specialized olfactory hairs in insects. The mechanism by which the PBPs remove the pheromone from the inner surface of sensory hairs and deliver it to the sensory cell remains unclear. Existing qualitative models postulate that pheromone is released near the dendrite by a decrease in pH or by a reduced form of the PBP. This s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012